
Desirerata
INTERPRETER / RUNTIME

Simple implementation, in the STEPS sense. Can be looked at and understood.
Perhaps realized physically.

Flexible. Instead of provisions for anticipated features, the language should allow
features to be added as their need is recognized.

Instant update. One can make fluid code changes (e.g. dragging a slider) and the
process should update immediately and fluidly.

Full control. We can change the runtime into what we want.

FFI? We need some way of incorporating foreign code when necessary.

Inspectable. We can see and visualize the inner workings of the interpreter.

LANGUAGE

Evocative queries. Query syntax is not “blind”, but is seen in the context of what is
being queried.

First-class space, time, and possibility. The author thinks in terms of what the
object sees, has seen, and could see.

Richer than text. Images, graphs, etc., can be part of the code. (And not merely as
comments.)

Directly-manipulable. The language is designed for making continuous changes
(e.g. dragging a slider.)

Transition path away from screen. Towards programming by manipulating
physical objects.

First-person objects. The author thinks from the perspective of the object.

Detect position of lasers
Illuminate walls and objects
Track location of objects
High-resolution illumination

Scan walls and objects
Detect and parse voice
Print or fabricate objects
Actuate and move objects

Detect laser identity / buttons
Track people’s location, gestures
Track manipulation of objects
Morph objects

PHYSICAL INTERFACE

Literally global. Every object in the world can be can be referenced with a unique id.

Query across space. Objects can see other objects. Queries can involve spatial
scope and orientation.

Gracefully incomplete. The real world is truth. The computer’s model of the world
is necessarily incomplete, and perhaps even inferred probabilistically.

Query across time. Objects can see everything that has ever been. Queries can
involve temporal scope, or can operate over time (like signal processing filters).

Query across possibility. Objects can fantasize. Queries can involve simulated
future scenarios in parallel worlds.

Provenance and influence. Where did this data come from, and where did it go? It
should be possible to reconstruct an entire chain of events.

First-class people? Perhaps a person should not be an “object”.

WORLD MODEL

Responding to the environment, instead of messaging. Processes are
coordinated not by direct communication, but by influencing the physical state (e.g.
moving) or virtual state (e.g. adding data to a collection) and observing such
changes around them.

Seeing the world, instead of querying a database. Objects look around themselves
in space and time, and notice changes of interest. Objects see each other.

Dynamic ether? Perhaps the space between objects (the air, the background or
“game board”) can run processes and hold data.

Attachments, instead of virtual filesystems and databases. Computational
processes and data collections are virtually attached to physical objects.

METAPHORS

Technology Platform

✔ will do
✔ will do
✔ will do!
✔ will do

~ in a limited way (not complete coverage)
~ probably in a limited way, for voice commands
~ will do, but probably not in a fully dynamic way
~ in limited domains (xy table, microrobots)

✖ probably not for now
✖ probably not for now
✖ probably not beyond position/orientation
✖ not yet

I’m less attached to the word “attachments”, but it’s very much the case that every
process and state variable is associated with a physical object.

Observables and observation are front-and-center, and should be the primary form of
influence. But we’re also adding messaging for the times when you need to push.

Observables represent this concept.

Not as a primitive, but a recognizer can recognize a volume of air, or a game board,
as an “object”, which can then run processes and hold data.

Probably not for now. Tagged objects will be unique within our room, and untagged
objects do not have a persistent virtual identity.

Recognizers and observables are in this spirit, or can be. For now, I don’t expect
much probabilistic inference at the system level (just contained within limited
domains such as vision and voice processing).

Yes, via location observables.

Would like to aim for this. Observables-as-streams is a first step, observables-as-of-
a-point-in-time is a next step.

Probably not for now.

Probably in the form of: an observable value is tagged with the observable values
and/or message that it is a “reaction” to, as well as the process that produced it. This
tag is visible from the meta-system. This will probably require the participation of the
interpreter, instead of happening at system-level. (All this data is currently collected
in v2, but not made visible. How to make it visible is its own project.)

Don’t know yet how or whether to model people in the system.

Interpreters are objects, so they can be as spatial and physical as any object. An
interpreter can be a poster, whiteboard, exhibit, or whatever.

Now thinking about this as a multilingual system, with multiple interpreters that
interface with a common object model.

Flexibility comes from allowing for arbitrary languages on top of a flexible object
model.

Programs are observables, and observables are streams. Interpreters will observe
changes to the program, and can update appropriately.

Some interpreters, such as Node and Python, we’ll be stuck with. As we gravitate
toward our own interpreters, we’ll get more control.

Likewise, we’ll start out with opaque interpreters, but as we gradually make our own
within the system, they’ll be as inspectable as anything else in the system.

At a coarse-grained level, behaviors can be in any language and can communicate
with behaviors in other languages. At a fine-grained level (e.g. calling a simple
javascript function from a custom language), not sure yet.

Most of these things are up to the individual languages, but there shouldn’t be
anything about the object model that prevents them.

Direct referencing of physical objects. Programming involves pointing at relevant
objects and data in the world, not typing their names

Interpreters with arbitrary programs are intended to support this path. Programs can
be any amount of textual or physical. But this will require a good toolkit for making
interepreters.

