
2.2. Characterizing Physical Interaction Designs

We conducted a literature survey of existing systems employing passive,
untethered input from paper and other everyday objects. To concentrate on
this aspect of physical interaction design, we limited the purview of this sur-
vey—and the subsequent toolkit—in two important ways. First, this taxon-
omy omits interfaces that employ powered sensing and actuation, such as
haptic feedback. Second, this taxonomy omits 3D sensing. These constraints
o�er a coherency of user experience interests, making it easier to compare the
systems. In addition, our intuition was that these other areas have design re-
quirements—such as the low-latency needed by force-feedback haptics—that
would require di�erent architectural support. Several of the taxonomies and
toolkits mentioned earlier in this section target these other aspects of physical
interaction design.

HUMAN–COMPUTER INTERACTION, 2009, Volume 24, pp. 315–366

Figure 2 . Collaborage (Moran et al., 1999), a spatial TUI where physical walls such as
an in/out board (left) can be captured for online display (right). Reproduced with
permission.

Figure 3 . The marble answering machine (Ishii & Ullmer, 1997), an associative TUI, uses
marbles as a physical index to recorded answering machine messages. Left: Bishop’s
original sketch, redrawn by the author. Right: Bishop’s prototype where resistors are
embedded in marbles.

3. FIELDWORK INSPIRING PAPIER-MÂCHÉ

3.1. Team, Process, and Goals

In each of the three projects that employed computer vision, the team in-
cluded a vision expert. Even with an expert, writing vision code proved chal -
lenging. In the words of one vision researcher, “getting down and dirty with
the pixels” was di�cult and time consuming. Writing code without the help of
a toolkit yielded applications that were unreliable, brittle, or both. In addi -
tion, in two of the nonvision projects, the person who developed the tangible
input was di�erent from the person who developed the electronic interac-
tions. In the remaining cases, the developers all had a substantial technical
background and worked on both the physical and electronic portions. We
speculate that if tools with a lower threshold were available to these individu-
als, then a larger portion of the team may have contributed to functioning
prototypes, rather than just conceptual ideas.

3.1 Notes
CV is Hard

Projects lasted 2.5 - 3 years

Main research effort spanned 1.5 years, with a fast & 
furious prototyping at the beginning

Often, the interviewees redesigned aspects of their system architectures to
support a wider range of behavior. This refactoring re�ects positively on the
developers; advocates of agile programming methods argue that software
architectures should be simple at �rst, becoming more complex only as
needed (Beck, 2000). This heavy refactoring also re�ects negatively on the
current state of software tools in this area. Much of the modularity that our in -
terviewees introduced could be more e�ectively provided at the toolkit level,
and indeed is supported in Papier-Mâché. Examples include changing the
type of camera, switching between input technologies, or altering the map-
ping between input and application behavior.

We also spoke with the interviewees about their user experience goals. At a
high level, they o�ered goals like “technology should make things more calm,
not more daunting” and people are “torn between their physical and elec -
tronic lives, and constantly trying work-arounds.” The primary motivation
our interviewees had for building a tangible interface was the desire for a con-
ceptual model o� nteraction that more closely matched user’s behavior in
the real world, often as one interviewee described it, “trying to avoid a
computer.”

3.2. Acquiring and Abstracting Input

A general theme among interviewees was that acquiring and abstracting
input was the most time consuming and challenging piece of development.
This is not, as the cliché goes, a “small matter of programming.” Acquisition
and abstraction of physical input, especially with computer vision, requires a
high level of technical expertise in a �eld very di�erent from user interface
development. These novel input technologies, especially vision, do not al-
ways function perfectly. We found that consequently, it is important to design
a system where occasional errors do not prevent the system as a whole from
functioning, and to provide feedback so that users can diagnose and help re-
cover from system errors. An interviewee explained, “The sensing hardware
is not perfect, so sometimes we had to change interactions a bit to make them
work in the face of tracking errors.” This error-aware design of physical inter-
faces is similar to the techniques used for voice user interface design, where
limiting grammar size and providing con�rmation feedback help systems
minimize errors, and help users diagnose and recover from errors when they
do occur.

A general theme among interviewees was that acquiring and abstracting
input was the most time consuming and challenging piece of development.
This is not, as the cliché goes, a “small matter of programming.” Acquisition
and abstraction of physical input, especially with computer vision, requires a
high level of technical expertise in a �eld very di�erent from user interface
development. These novel input technologies, especially vision, do not al-
ways function perfectly. We found that consequently, it is important to design
a system where occasional errors do not prevent the system as a whole from
functioning, and to provide feedback so that users can diagnose and help re-
cover from system errors. An interviewee explained, “The sensing hardware
is not perfect, so sometimes we had to change interactions a bit to make them
work in the face of tracking errors.” This error-aware design of physical inter-
faces is similar to the techniques used for voice user interface design, where
limiting grammar size and providing con�rmation feedback help systems
minimize errors, and help users diagnose and recover from errors when they
do occur.

3.5. Language, Architecture, and Reuse

Our interviewees used several di�erent programming languages: C++
(three), Java (two), Prolog (one), Director (one), Visual Basic (one), and Py -
thon (one). Two of the non-Java teams have since switched to Java. Eight of
the nine interviewees used a Windows PC as their development platform.

Most of the interviewees chose a programming language based on one par-
ticular requirement. They requirements cited were as follows:

1. Technology integration : Sometimes, the decision was made to ease integra-
tion with a particular piece o� nput technology, for example, the De -
signers’ Outpost vision system was built in C++ because the OpenCV
library it used was in C.

2. Library support : The majority of our interviewees chose a language
based on the library use it facilitated. Two developers chose the Win-
dows platform and a Visual Studio language speci�cally for their easy
interoperability with Microsoft O�ce. A third interviewee was con-
strained to the Windows platform for integration reasons, and chose Di-
rector for its rapid development capabilities. Two of our interviewees
decided on Java because of its rich 2D graphics libraries.

3. Developer �uency : For one interviewee, C++ was chosen “because [the
lead software developer] knew it well.” The same �uency sentiment
was expressed di�erently by another interviewee that C++ “was our
language of the time. Now we’re Java.”

4. Rapid development : One interviewee told us that “I used Python. This
language make prototyping fast and easy. It can be too slow at times,
but not too often thanks to Moore’s law.” Another interviewee, previ -
ously mentioned, settled on Adobe Director for rapid development
reasons.

These four reasons —technology integration, library support, developer
�uency, and rapid development —informed our choice of Java as a program -
ming language.

Figure 14 . ATN captures a bird’s-eye video feed of the physical space (left), locates peo -
ple using computer vision (middle), and displays local actors’ positions (orange) in a vir -
tual space (right) shared with remote actors (green). Non-participating remote actors are
placed in an observation deck. Each remote actor’s circle is marked with a yellow core
in his personal view. (Picture on right is annotated for grayscale printers). Image from
Lederer and Heer (2004).

5. EVALUATION

Although there has certainly been prior work on evaluating software tools,
this area is more limited than might be expected, perhaps because, as
Détienne (2001) wrote,

The dominant problems have been perceived as technical rather than as related
to the usability of the systems. The introspective approach, which is the com -
mon approach in this �eld, carries the illusion that usability problems are auto -
matically handled: tool developers will use their own experience as the basis for
judging the usefulness of the tools they develop. (p. 118)

These programmers were impressed with the ease of writing an applica -
tion using Papier-Mâché. One student was amazed that “it took only a single
line of code to set up a working vision system!” Another student remarked,
“Papier-Mâché had a clear, useful, and easy-to-understand API. The ease
with which you could get a camera and basic object tracking set up was ex-
tremely nice.” The students also extended the toolkit in compelling ways.
One student’s extension to the monitoring system played a tone whenever an
object was recognized, mapping the size of the recognized object to the tone’s
pitch. This provided lightweight monitoring feedback to the recognition
process.

Three other Berkeley projects have used Papier-Mâché. The �rst is Ob -
jectClassi�erViews (De Guzman et al., 2003), which provides a set of graphi -
cal user interface dialogs that allow users to create classi�ers and modify their
parameters. This work inspired us to integrate their code into Papier-Mâché
and to provide a mechanism for saving applications created visually.

The second is All Together Now (Lederer & Heer, 2004; see Figure 14), an
awareness tool where the locations o� ndividuals in a space are captured
through computer vision and presented abstractly on a Web page. Remote in-
dividuals can “interact” with the local individuals by placing a marker of them-
selves on the space. Prior to All Together Now, the Papier-Mâché library only
included edge detection, a stateless vision technique. The complexity of this
scene and the low �delity of the camera make stateless techniques impractical.
Lederer and Heer implemented the background subtraction algorithm to over-
come this. We incorporated their background subtraction code into the
Papier-Mâché library. This experience showed us that it is possible for individ-
uals interested in “getting under the hood” to change the vision algorithms used
by Papier-Mâché and that its overall architecture is modular enough to easily
accommodate new algorithms.

Summary: 

The authors do an extensive review 
of physical/digital interaction plat-
forms and make a toolkit, Papier-
Mache, to more easily integrate 
several types of physical and digital 
interactions. 

Highlights

Principles:

Input mode vs input action (2)
An elegant architecture should separate 
mode (WIMP*, gesture, speech) from action 
(select, create, or move). 
*windows, icons, menus, pointer

Support for ambiguous input and 
for mediating the input (2.1)
Provide support for input that requires inter-
pretation and methods for intervening be-
tween the recognizer and the application to 
resolve the ambiguity. 

Ambiguity is an essential property of 
recognition-based input support. Ambiguity 
information is maintained in the toolkit 
through the use of hierarchical events.

Categorization of dynamic systems 
(2.2)
spatial applications
users collaboratively create and interact with 
information in a Cartesian plane

topological applications
use the relationships between physical ob-
jects to control application objects

associative applications
physical objects serve as an index or physi-
cal hyperlink to digital media

forms applications
provide batch processing of paper interac-
tions

Event notifications (3.3)
Basic events hinge on notifying objects of the 
presence, absence, and modification of 
physical objects. 

Event categorizations (3.3)
binary events
Buttons, switches, discrete events

continuous scalar events
Planar position, orientation, size

rich capture events
Audio recording, video, photo

Toolkit Support for Integrating 
Physical and Digital Interactions
Scott R. Klemmer, James A. Landay

4. THE PAPIER-MÂCHÉ ARCHITECTURE

Our literature survey, experiential knowledge, and �eldwork data show
that a toolkit for tangible input should support

• Techniques for rapidly prototyping multiple variants of applications as a
catalyst for iterative design

• Many simultaneous input objects
• Input at the objectlevel, not the pixelor bits level
• Heterogeneous classes of input
• Uniform events across the multiple input technologies, facilitating rapid

application retargeting
• Classifying input and associating it with application behavior
• Visual feedback to aid developers in understanding and debugging in-

put creation, dispatch, and the relationship with application behavior

Figure 4 . The inheritance hierarchy for physical input devices. Each device class encap -
sulates a physical input. The InputDevice is a marker interface: it is an interface class
that contains no methods. Classes implement the marker interface to denote that they
represent a physical device.

Figure 5 . The inheritance hierarchy for PhobProducers. Producers are paired with
InputDevices; they take input from a device and generate PhobEvents. The abstract
PhobProducer base class manages the event listeners and the production of events.

Figure 6 . The inheritance hierarchy for factories: objects that create AssociationElts from
Phob input. The top level is the AssociationFactory interface. The middle level is
the DefaultAssociationFactory abstract class; this class provides the ability to be Visual -
lyAuthorable and the ability to serialize to XML using JAXB.

Figure 7. The inheritance hierarchy for associations. Associations are the elements in the
Papier-Mâché architecture that input is bound to. These elements can either be nouns or
actions. The Papier-Mâché library includes �ve common media manipulation actions,
and four common types of nouns.

Figure 8 . The monitoring window. In the �rst column, each current object appears in the
hierarchy beneath the producer that sensed it. The second column displays the vision in-
put and output. The third column displays classi�ers (in this �gure, RFID tags are associ-
ated with audio clips, and vision objects with graphical analogues).

IO
IO
IO
IO
IO

IO
IO
IO

IO
IO
IO
IO
IO
IO
IO

IO

Books with Voices

WebStickers

Audio Notebook

Video Mosaic

Palette

Triangles

Paper Flight Strips

Augmented Surfaces

S
P

A
T

IA
L

F
O

R
M

S

Collaborage

DigitalDesk

Designers' Outpost

Rasa

Illuminating Light

Urp

Senseboard

The metaDESK

Community Info Sharing

Paper PDA 

Paper User Interface 

T
O

P
O

LO
G

IC
A

L

mediaBlocks

A
S

S
O

C
IA

T
IV

E

Electronic Tags

DataTiles

Listen Reader

Marble Answering Machine

Electro
nic ta

gs

Barcodes

Im
age analysis

2D pointin
g

3D pointin
g

Audio captu
re

Speech re
co

Wall
Table

Deskto
p PC

Web
Handheld

Audio only

Prin
ter

INPUT TECHNOLOGY ELECTRONIC OUTPUT

8 8 10 7 1 2 2
Geo-re

fere
nced

Collo
cated

Non-collo
cated

No visual o
utp

ut
I /O Coordinat ion

9 8 4 35 6 8 6 1 33
Wall

Document

Table
Book

3D object

TANGIBLE INPUT

I O

I O

I O

I O

I O

I O
I O

IO
5 6 5 45


