Linda consists of ¢ few simple operations that embody
the tuple space moadel of parallel programming. Adding
these tuple-space operations to a base language yields a
parallel programmniing dialect. Use of Linda is growing

The fact that senders in Linda needn’t know any-
thing about receivers and vice versa is central to the
language. It promotes what we call an uncoupled pro-
gramming style. When a Linda process generates a new
result that other processes will need, it simply dumps
the new data into tuple space. A Linda process that
needs data looks for it in tuple space. In message pass-
ing systems, on the other hand, a process can’t dissemi-
nate new results without knowing precisely where to
send them. While designing the data generating pro-

The merging problem in Prolog-derived concurrent
languages is well-known. Some researchers argue that
the solution is simply to add a new merge primitive.
This solution points to a deeper problem, however. The

The Linda operating system environment we’re now
building accommodates multiple first class tuple spaces
[20]. A tuple space is created with certain attributes—
for example, some tuple spaces are persistent, and per-
sistent tuple spaces constitute the file system. Whole
tuple spaces can be treated as single objects: they can
be suspended, archived, reactivated or snapshotted en
masse. As always, a tuple space may contain active as



In this paper we present DepaLus, a foundation language for
programming and reasoning about distributed systems. DEDALUS re-
duces to a subset of Datalog [30] with negation, aggregate functions,
successor and choice, and admits an explicit representation of time
into the logic language. We show that DepaLus provides a declara-
tive foundation for the two signature features of distributed systems:
mutable state, and asynchronous processing and communication.

DEepALUS( programs are intended to capture temporal semantics.
For example, a fact, p(C,...C,, C,.1), with some constant C,,.;
in its time suffix can be thought of as a fact that is true “at time
C,+1”. Deductive rules can be seen as instantaneous statements:
their deductions hold for predicates agreeing in the time suffix and
describe what is true “for an instant” given what is known at that
instant. Inductive rules are temporal—their consequents are defined
to be true “at a different time” than their antecedents.

Time is a device that was invented to keep everything
from happening at once.*

for each timestep ¢, the temporal evaluation yields a database that
corresponds to the minimal model of the original DepALUS, program
with the successor relation truncated to the prefix ending at 7.



For a query ¢, the system is searching for documents d which imply the query logically, i.e.
for which the logical formula ¢ — d is true. Due to the intrinsic vagueness and imprecision
of IR, a logic that allows for uncertainty reasoning should be used. In [Rijsbergen 86],

Probabilistic Datalog is an extension of stratified Datalog (see e.g. [Ullman 88], [Ceri et
al. 90]). On the syntactical level, the only difference is that with ground facts, also a
probabilistic weight may be given, e.g.

0.7 indterm(dl,ir). 0.8 indterm(dl,db).

we can transform P into the corresponding set Pg of (deterministic) Datalog clauses, for
which there exists a least Herbrand model HL(Pg). The interpretation of Pk is a set of
possible worlds, where each world is a subset of HL(FPg).

—The rule-based approach allows for easy formulation of retrieval models for specific or
novel applications, like e.g. combination with a thesaurus or retrieval in hypertext bases
or hierarchically structured documents.



To solve these problems, we propose a new interaction
technique for drawing, interactive beautification. Inter-
active beautification is a technique for rapid construc-
tion of geometric diagrams (an example is shown in Fig-
ure 1) without using any editing commands or special in-
teraction modes. Interactive beautification can be seen
as an extension of free stroke vectorization [7] and dia-
gram beautification [18]. It receives a user’s free stroke
and beautifies the stroke considering various geometric
constraints among segments. The intuitiveness of the
technique allows novice users to draw such precise dia-
grams rapidly without any training.

a)

Multiple candidates are

generated.
d)
——
Confirm
(tapping outside).
Select a candidate by
tapping.
e) PpINg f)
—
Confirm.

Existing Segments
— Primal or Currently Selected Candidate
... Multiple Candidates

Geometric Constraints Satisfied by the Candidate

Figure 7: Interaction with multiple candidates: the
user can select a candidate by tapping on it, and sat-
isfied constraints are visunally indicated.

Input (1

Segment Coordinates
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[ Constraint inference moduIeJ
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(x0=0, x1=10, y0=50, y1=52, yO=y1)

[ Constraint solver module ]

Generated Candidates
(0,50,10,50),(0,50,10,52)

[ Candidate evaluation module}

1 ‘ l 1 l 1 ‘ Ordered Candidates [ 2°"""""
primary (0.50,10,52)
secon

ary (0,50,10,50)

Figure 10: Sturcture of the beautification routine



field. We introduce the notion of mass, distance, gravitational force, repulsive force,
and inertia of objects to define a metric space for the field, so that objects migrate
to their (sub)optimal (or satisfactory) locations. We also propose a communication
model called assimilation/dissimilation model, where communication is represented
as the assimilation/dissimilation of messenger objects and their migration.

In this paper, we propose a new computing model called computational field model,
or CFM for short. CFM is a computing model for solving many large and complex
problems of different purposes in an open-ended distributed environment. We understand
that solving a problem implies mutual effects between the computational field and the
problem. That is, problems themselves change or affect the environment itself. Or, we
can even say that problems are a part of the computing environment. In this sense, we

share the same view as described in [Huberman 88].

We then introduce the notions of distance between objects and the mass of an object
to the model in order to form a metric space. We define gravitational force, repulsive force,
and inertia, metaphorically to dynamics. Using these measures, objects migrate to their
(sub)optimal (or satisfactory) locations during computation (i.e. over their lifetime). We

call this Mass and Distance-based computing or MD-based computing for short.

the objects. Object-oriented computing can be understood as the departure from the
microscopic view of computing where computation proceeds by executing an algorithm
of a procedure to the macroscopic view where computation proceeds as mutual effects

among objects.

New Task - - ——— - o
S Task A Open Ended dissimilate

7 = Gravitational Fn?ug @
_~~—~_ Task B //‘

7 -~ migrate

ol
e‘j\i;»/_\ AN L,\/\/)@NQD

Repulsive Force )
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/ T _—_ e '
— T _— (A %D

assimilate

Figure 1: MD-based computing in a computational field Figure 2: Unidirectional asynchronous communication



Croquet was built to answer a simple question. If we were
to create a new operating system and user interface knowing
what we know today, how far could we go? What kinds of
decisions would we make that we might have been unable
to even consider 20 or 30 years ago, when the current
operating systems were first created?

Figure 2: The other user is dragging a window up into
Figure 1. Croquet multi-user environment. the air.

e A coordinated universal timebase embedded in
communications protocol.
e Replicated, versioned objects — unifying replicated
computation and distribution of results.
e Replication strategies — that separate the mechanisms
of replication from the behavioral semantics of objects.
e Deadline-based scheduling extended with failure and
nesting.
e There are no boundaries in the system. Weare creating o A coordinated “distributed two-phase commit” that is
an environment where anything can be created; used to control the progression of computations at

everything can be modified, all while still inside the 3D
world. There is no separate development environment,
no user environment. It is all the same thing. We can
even change and author the worlds in collaboration
with others inside them while they are operating .

multiple sites, to provide resilience, deterministic
results, and adaptation to available resources. Uses
distributed sets.

Time-synchronized I/O. Input and output to real-time
devices are tied to coordinated universal time.



Following the motivations above, in this paper we propose a
new technique for visual indoor scene recognition using a mobile
robot. As distinguishing features, our approach is based on three
main features. First, a probabilistic hierarchical representation that
uses common indoor objects, such as Doors or furniture, as an
intermediate semantic representation. Using this representation,
we associate low-level visual features to objects by training ob-
ject classifiers, and we associate objects to scenes by learning con-
textual relations among them. Second, we exploit the embedded
nature of a mobile robot by using 3D information to implement a
focus of attention mechanism. Using this mechanism, we can use
3D information to discard unlikely object locations and sizes. Third,
we also exploit the embedded nature of a mobile robot and ideas
from information theory to implement an adaptive strategy to
search for relevant objects. Under this strategy, we use sequences
of images captured during robot navigation to build a partial be-
lief about the current scene that allow us to execute only the most
informative object classifiers.

Recent approaches have achieved good results in scene classi-
fication by using intermediate representations and bag-of-words
schemes. Fei-Fei and Perona recognize scenes using an interme-
diate representation that is provided by an adapted version of
the Latent Dirichlet Allocation (LDA) model [14]. Bosch et al. [35]
and Sivic et al. [36] achieve scene classification by combining
probabilistic Latent Semantic Analysis (pLSA) with local invariant
features. Lazebnik et al. modify bag-of-words representations by
using a spatial pyramid that divides the image into increasingly
fine sub-regions with the idea of capturing spatial relations among
different image parts [37]. As we mentioned before, these tech-
niques show a significant drop in performance for the case of in-
door scenes [15].

In all our tests we use QVGA images (320 x 240 pixels)

PlaceProbs

Office :
Hall

Conf
Bath

93.68%
1 3.16%

:3.16%
: 0.00%

PlaceProbs

Office : 91.65%

Hall :3.25%
Conf :5.10%
Bath :0.00%

(a) DCC-PUC. (b) CSAIL-MIT.
Table 1
Confusion matrices for compared methods.
Scene Off. (%) Hall (%) Conf. (%) Bath. (%)
OM
Office 91 7 2 0
Hall 7 89 4 0
Conference 7 7 86 0
Bathroom 0 6 0 94
The human labeler has erred here:
PlaceProbs PlaceProbs
Living Room :5.25% Living Room :11.42%
. Dining Room : 3.81% Dining Room : 7.93%
Bedroom : 82.36% Bedroom 1 76.38%
l \ ~Kitchen 1 4.02% “Kitchen :3.24%
:4.56% Bathroom :1.03%

[S

(a) A Bed is detected.

(b) ATV Monitor is detected.

Fig. 15. Method operating inside a Kitchen.

=
<
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A central goal of image-based rendering is to evoke a visceral sense
of presence based on a collection of photographs of a scene. The
l_ast seyergl years _havp seen si_gn@ﬁc_ant progress towards_this g_qal

e Where was I? Tell me where I was when I took this picture.

e What am I looking at? Tell me about objects visible in this
image by transferring annotations from similar images.

The backbone of our system is a robust structure from motion
approach for reconstructing the required 3D information. Our ap-
proach first computes feature correspondences between images, us-
ing descriptors that are robust with respect to variations in pose,
scale, and lighting, and runs an optimization to recover the camera
parameters and 3D positions of those features. The resulting corre-
spondences and 3D data enable all of the aforementioned features
of our system.

Sift and RANSAC are documented later

background scene structures. As such, we side-step the more chal-
lenging problems of reconstructing full surface models [Debevec
et al. 1996; Teller et al. 2003], light fields [Gortler et al. 1996;
Levoy and Hanrahan 1996], or pixel-accurate view interpolations
[Chen and Williams 1993; McMillan and Bishop 1995; Seitz and
Dyer 1996; Zitnick et al. 2004]. The benefit of doing this is that we
are able to operate robustly with input imagery that is beyond the
scope of previous IBM and IBR techniques.

The first step is to find feature points in each image. We use the
SIFT keypoint detector [Lowe 2004], because of its invariance to
image transformations. A typical image contains several thousand

images, we match keypoint descriptors between the pair, using the
approximate nearest neighbors package of Arya, et al.[1998], then
robustly estimate a fundamental matrix for the pair using RANSAC

A set of points P = {p1,p2,...,pn}. Each point consists
of a 3D location and a color obtained from one of the image
locations where that point is observed.

A set of cameras, C = {C1,Cq,...,Cx}. Each camera Cj
consists of an image I, a rotation matrix R, a translation ¢;,
and a focal length f;.

A mapping, Points, between cameras and the points they ob-
serve. That is, Points(C) is the subset of P containing the
points observed by camera c.

A set of 3D line segments £ = {l1,l2,...,lm} and a map-
ping, Lines, between cameras and the set of lines they ob-
serve.
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Fig. 1. Overview: from an RGB and depth image pair, our system detects contours,
generates 2.5D region proposals, classifies them into object categories, and then infers
segmentation masks for instances of “thing”-like objects, as well as labels for pixels
belonging to “stuff”-like categories.

In [18], we used gPb-ucm [2]

Augmentation with synthetic data: An important observation is the amount
of supervised training data that we have in the NYUD2 dataset is about one
order of magnitude smaller than what is there for PASCAL VOC dataset (400
images as compared to 2500 images for PASCAL VOC 2007). To address this
issue, we generate more data for training and finetuning the network. There

SVM Training: For training the linear SVMs, we compute features either from
pooling layer 5 (pool5), fully connected layer 6 (fc6), or fully connected layer 7

input channels| RGB RGBD|RGB RGB |disparity disparity| HHA/HHA HHA|HHA HHA|RGB+HHA
synthetic data? | ‘ ‘ 2x  15x | 2x  2x 2x
dress- garba-
-er |-ge bin
1.4 6.6
16.4 | 26.7
18.9 | 15.7
30.4| 39.4
269 | 32.9
29.0 | 37.1
PG BN
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The aim of this work is to retrieve those key frames and
shots of a video containing a particular object with the ease,
speed and accuracy with which Google retrieves text docu-
ments (web pages) containing particular words. This paper
investigates whether a text retrieval approach can be suc-
cessfully employed for object recognition.

Each elliptical affine invariant region is represented by
a 128-dimensional vector using the SIFT descriptor devel-

3. Building a visual vocabulary

The objective here is to vector quantize the descriptors into
clusters which will be the visual ‘words’ for text retrieval.

The text retrieval analogy also raises interesting ques-
tions for future work. In text retrieval systems the tex-
tual vocabulary is not static, growing as new documents are
added to the collection. Similarly, we do not claim that our
vector quantization is universal for all images. So far we
have learnt vector quantizations sufficient for two movies,
but ways of upgrading the visual vocabulary will need to be
Figure 6 Matching sages. Top rowe. (et Queny ein ¢ found. One could think of learning visual vocabularies for

row: matches after using stop-list, Last row: Final set of matches

after filtering on spatial consistency. different scene s (e.g. city scape vs a forest).
pe g pe
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Figure 2. A framework for tabletop tangible interfaces
based on the dimension of I/O space and actuation
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User Interface Coordinator ]

Interfaces

Tabletop

Levitator Controller

Magnetic
Projection

{3-Axis Motor | (3D Tracking}

>

Hand-Pose
Tracking

Figure 4. Overview of the ZeroN System

Figure 15. Visualizing 3-body problem.

3D Motion Prototyping

Creating and editing 3D motion for animation is a long and
complex process with conventional interfaces, requiring
expert knowledge of the software, even for simple proto-
typing. With record and play-back interaction, users can
easily prototype the 3D movement of an object and watch it
playing back in the real world. The motion can possibly be
mapped to a 3D digital character moving accordingly on
the screen with dynamic virtual environments. As a result,
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This work presents GaussBricks (Figure 1), a system of mag-
netic building blocks that allow users to construct a tangi-
ble form on the displays. Each magnetic building block con-
taining strong magnets is designed simply to facilitate config-
urable and stable form construction. The physical form con-

construction brick SESEE

i

X
. =]

@ = 20 I o I . @ ©
Figure 2. Construct tangible form for physical simulation in the following steps: (a) Use construction bricks to construct and shape articulated physical
structures on the display. Balls in the simulated gravity bounced away when colliding with the physical structure. (b) Use locking bricks to rigidify parts

of the construction. (c) Holding the rigid parts to perform spatial operations without affecting the structure. (d) Shape the non-rigid part to facilitate
further manipulations, such as (e) pouring the balls.

acrylic case
o, gt
£ & = =5
" display panel
L A

EHE EHE

Hall-sensor grid

@ = north = south ®
Figure 3. Magnetic fields shaped by two construction methods. (a) Non- In the tangible flight simulation (Flggre: 1.3‘:)’ useljs gl'?SP his
uniform magnetic fields caused by attracting the magnets. (b) Uniform airplane assembly as the controller, tilt it in four directions to

magnetic fields shaped by firm casing. A laptop display mounted with an steer or pan in the context (Figure 13d), and lift or lower it to
analog Hall-sensor grid visualizes N- and S-polar magnetic field intensity

maps in red and blue, respectively. change the height of the flight naturally.

A virtual pet application (Figure 15b) demonstrates the en-
abled touch input capability. Users use touch blocks and non-
touch blocks to construct a sleeping cat. Users pat the cat
to wake it up, please it by sliding their finger along its body
(Figure 15c), and irritate it by pinching its body (Figure 15d).
The cat’s facial expression changes according to his feelings.
While performing multitouch gestures on the cat’s body, the
users press the non-touch block to prevent the model from
moving away.
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We introduce a 3D puppetry system that allows users to
quickly create 3D animations by performing the motions with
their own familiar, rigid toys, props, and puppets. As shown
in Figure 1, the puppeteer directly manipulates these objects
in front of an inexpensive Kinect depth camera [10]. We

Apathetic Ambulance

AT AS

Rendered Output

B
o
E
&
£
8
g
>

A% "22] z}

Figure 2. Example frames of our system in action. The bottom row shows the p pp The top row shows the result
of our system tracking the puppets in real time and rendering them in a virtual set.

The KinectFusion project [17] allows one to quickly scan
a physical environment. We use a similar system, Recon-
structMe [13], to convert physical puppets into 3D models.

- Puppet Identifier \L Pose Tracker $
SIFT Matches |9[ nou;."gﬁe"é?}.ﬁm J—>| |CP-based Alignment H Puppet Poses }

Point-cloud
[ Kinect Data Back%r::‘r:l:i B H Puppet-based Segmentation H P;gf;‘am J

Figure 3. Overview of our system’s Capture module. With each frame, the Kinect provides an RGB image and depth map. The puppet identifier
compares SIFT features in those data to the features found in a database of image templates to identify puppets and roughly estimate their poses. The
RGB and depth information are also combined into point clouds, which are to remove the and the ’s hands, and then
‘matched to stored 3D models using ICP to estimate the puppets’ 6D poses.

IS RS

Raw point cloud Background Removed Skin Removed Segmented by Puppet

Figure 6. Steps of point-cloud inning with the raw point cloud from the Kinect, our segmenter removes the background and the
puppeteer’s skin, and finally produces separate point clouds associated with each puppet.

Segmented Point Cloud

Input Point Clouds

Stored Puppet Model Initial Alignment 2 lterations 4 Iterations 32 Iterations

Figure 7. Progressmn of ICP ali b d point cloud and a Puppet Database model. Our ICP algorithm begins by transforming
the puppet model using its last known pose (if avallable, otherwise it uses the rough pose estimate from the Puppet Identifier). Then each ICP iteration
brings the clouds into closer alignment until the root mean square distance between their points meet an error threshold.
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Ultrasonic levitation method has been used to levitate
lightweight particles [1], small creatures [2], and water droplets
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focal length R was 200 mm. The spatial resolution of the position
of the focal point was 0.5 mm, and the refresh rate was 1 kHz.
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3. Elephant source programs may not need data structures, because they can

refer directly to the past. Thus a program can say that an airline passenger
has a reservation if he has made one and hasn’t cancelled it.

For example, when a program “promises” someone to do something, it
needn’t believe (as Searle (1969) suggests it should) that fulfillment of the
promise will do its recipient some good. Indeed many programs that promise

Notice that it isn’t necessary for most purposes to apply moral terms
like honest, obedient or faithful to the program, and we won’t in this paper.

2. Questions. The user can question the program, and the program can
question the user.

goals. The most important features of this informatic situation are indepen-
dent of the fact that we are humans. Martians or robots with independent
knowledge and goals would also require speech acts, and many of these would
have similar characteristics to human speech acts.

Algol 48 programs are organized quite differently from Algol 60 programs.
Namely, the changes to variables are sorted by variable rather than sequen-
tially by time. However, by reifying variables, Algol 50 permits writing pro-
grams in a way that permits regarding programs in this fragment of Algol 60
as just sugared versions of Algol 50 programs.
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External Libraries

BLAS/LAPACK OpenFST

Kaldi C++ Library

[ matrix | | utis | || v || Tree || FsText |
| Feat || oMM | [ samMm | HMM

Decoder

Kaldi C++ Executables

(Shell) Scripts

Fig. 1. A simplified view of the different components of Kaldi. The library
modules can be grouped into those that depend on linear algebra libraries
and those that depend on OpenFst. The decodable class bridges these two
halves. Modules that are lower down in the schematic depend on one or more
modules that are higher up.

To avoid “code rot”, We have tried to structure the toolkit
in such a way that implementing a new feature will generally
involve adding new code and command-line tools rather than
modifying existing ones.

VI. LANGUAGE MODELING

Since Kaldi uses an FST-based framework, it is possible, in
principle, to use any language model that can be represented as
an FST. We provide tools for converting LMs in the standard
ARPA format to FSTs. In our recipes, we have used the
IRSTLM toolkit * for purposes like LM pruning. For building
LMs from raw text, users may use the IRSTLM toolkit, for
which we provide installation help, or a more fully-featured
toolkit such as SRILM *.
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iVectors which capture both speaker and environment spe-
cific information have been shown to be useful for rapid adap-
tation of the neural network [7, 8, 9]. iVector based adaptation
has also been shown to be effective in reverberant environments
[10]. In this paper we use this adaptation technique.

Reverberant speech is assumed to be composed of direct-
path response, early reflections and late reverberations. Reflec-
tions within a delay of 50ms of the direct signal are catego-
rized as early reflections. Late reverberations, which comprise
of later reflections, have reverberation time from 200 to 1000
ms in typical office environments [1]. Early reflections can be

Decoding the entire 10 minute recording as one segment is
not possible due to round-off in the decoder. We segmented the
recordings into chunks of 10 seconds long each, shifted by 5
seconds each time. There was no attempt to make the chunk
boundaries coincide with silence. We reasoned that if a record-
ing is cut in the middle, only the part of the transcript near the
cut point will be affected, so we filtered the transcripts by re-
moving words whose midpoints were within 2.5 seconds of the
edge of its chunk of origin, before combining them into a single
long transcript.

Figure 1: Computation in TDNN with sub-sampling (red) and
without sub-sampling (blue+red)
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Recent advances in algorithms and computer hardware
have made it possible to train neural networks in an end-
to-end fashion for tasks that previously required signifi-
cant human expertise. For example, convolutional neural

The goal of this paper is a system where as much of the
speech pipeline as possible is replaced by a single recur-
rent neural network (RNN) architecture. Although it is

T4 T4

N/ Ny

Output Gate

Input Gate

Figure 1. Long Short-term Memory Cell.

scriptions matter. Connectionist Temporal Classification
(CTC) (Graves, 2012, Chapter 7) is an objective function
that allows an RNN to be trained for sequence transcrip-
tion tasks without requiring any prior alignment between
the input and target sequences.

While automatic speech recognition has greatly benefited
from the introduction of neural networks (Bourlard & Mor-
gan, 1993; Hinton et al., 2012), the networks are at present
only a single component in a complex pipeline. As with

‘H is usually an elementwise application of a sigmoid func-
tion. However we have found that the Long Short-Term
Memory (LSTM) architecture (Hochreiter & Schmidhuber,
1997), which uses purpose-built memory cells to store in-
formation, is better at finding and exploiting long range
context. Fig. 1 illustrates a single LSTM memory cell. For

To provide character-level transcriptions, the network must
not only learn how to recognise speech sounds, but how to
transform them into letters. In other words it must learn
how to spell. This is challenging, especially in an ortho-
graphically irregular language like English. The following

target: T. W. A. ALSO PLANS TO HANG ITS BOUTIQUE SHINGLE IN AIR-

PORTS AT LAMBERT SAINT

output: 7. W. A. ALSO PLANS TOHING ITS BOOTIK SINGLE IN AIRPORTS AT

LAMBERT SAINT

probability

outputs

0 A0
A

errors

W*W wavtorn
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“Deep learning. How well do you think it would work
for your computer vision problem?” Most likely this ques-
tion has been posed in your group’s coffee room. And

Answer: Surprisingly the CNN features on average beat
poselets and a deformable part model for the person at-
tributes labelled in the H3D dataset. Wow, how did they
do that?! They also work extremely well on the object at-
tribute dataset. Maybe these OverFeat features do indeed
encode attribute information? (Details in section 3.5.)

e The feature vector is further L2 normalized to unit
length for all the experiments. We use the 4096 di-
mensional feature vector in combination with a Sup-
port Vector Machine (SVM) to solve different classifi-
cation tasks (CNN-SVM).

Method mean Accuracy
HSV [7] 43.0
SIFT internal [27] 55.1
SIFT boundary [ /] 32.0
HOG [27] 49.6
HSV+SIFTi+SIFTb+HOG(MKL) [ /] 72.8
BOW(4000) [14] 65.5
SPM(4000) [ 4] 67.4
FLH(100) [14] 72.7
BiCos seg [ ] 79.4
Dense HOG+Coding+Pooling[2] w/o seg 76.7
Seg+Dense HOG+Coding+Pooling[ '] 80.7
CNN-SVM w/o seg 74.7
CNNaug-SVM w/o seg 86.8

Table 4: Results on the Oxford 102 Flowers dataset. All the methods
use segmentation to subtract the flowers from background unless stated

otherwise.

Thus, it can be concluded that from now on, deep learning
with CNN has to be considered as the primary candidate in
essentially any visual recognition task.
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Our object detector is based on a very simple idea: to
learn a separate classifier for each exemplar in the dataset
(see Figure 2). We represent each exemplar using a rigid
HOG template [7]. Since we use a linear SVM, each classi-
fier can be interpreted as a learned exemplar-specific HOG
weight vector. As a result, instead of a single complex

Figure 4. Exemplar-SVMs. A few “train” exemplars with their top detections on the PASCAL VOC test-set. Note that each exemplar s
HOG has its own dimensions. Note also how each detector is specific not just to the train’s orientation, but even to the type of train.

At test time, each Exemplar-SVM creates detection win-
dows in a sliding-window fashion, but instead of using a
standard non-maxima-suppression we use an exemplar co-
occurence based mechanism for suppressing redundant re-
sponses. For each detection we generate a context feature
similar to [3, 9] which pools in the SVM scores of nearby
(overlapping) detections and generates the final detection
score by a weighted sum of the local SVM score and the
context score. Once we obtain the final detection score, we
use standard non-maximum suppression to create a final,
sparse set of detections per image.

Exemplar Exemplar Exemplar

Detector w Detector w

Figure 8. Qualitative Geometry Transfer. We transfer geometric labeling from bus exemplars onto corresponding detections.
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To a large extent, scene analysis (and, in fact, science
in general) is concerned with the interpretation of sensed
data in terms of a set of predefined models. Conceptually,
interpretation involves two distinct activities: First, there
is the problem of finding the best match between the
data and one of the available models (the classification
problem); Second, there is the problem of computing the
best values for the free parameters of the selected model
(the parameter estimation problem). In practice, these
two problems are not independent—a solution to the
parameter estimation problem is often required to solve
the classification problem.
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A basic problem in image analysis is establishing a
correspondence between the elements of two represen-
tations of a given scene. One variation of this problem,

E. A “Real” Location Determination Problem

Cross correlation was used to locate 25 landmarks in
an aerial image taken from approximately 4,000 ft with
a 6 in. lens. The image was digitized on a grid of 2,000
X 2,000 pixels, which implies a ground resolution of
approximately 2 ft per pixel. Three gross errors were
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3D camera viewpoint. They are well localized in both the spatial and frequency domains, re-
ducing the probability of disruption by occlusion, clutter, or noise. Large numbers of features
can be extracted from typical images with efficient algorithms. In addition, the features are
highly distinctive, which allows a single feature to be correctly matched with high probability
against a large database of features, providing a basis for object and scene recognition.

For image matching and recognition, SIFT features are first extracted from a set of ref-
erence images and stored in a database. A new image is matched by individually comparing
each feature from the new image to this previous database and finding candidate match-
ing features based on Euclidean distance of their feature vectors. This paper will discuss
fast nearest-neighbor algorithms that can perform this computation rapidly against large
databases.
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Figure 12: The training images for two objects are shown on the left. These can be recognized in a
cluttered image with extensive occlusion, shown in the middle. The results of recognition are shown
on the right. A parallelogram is drawn around each recognized object showing the boundaries of the
original training image under the affine transformation solved for during recognition. Smaller squares
indicate the keypoints that were used for recognition.



