
When Bill Wulf called to say that the four of us had been 
awarded this year’s Draper Prize, I was floored because 
even the possibility was not in my mind. Given the 
amazing feats of engineering in the 20th century, the 
previous laureates, and that this is just the 10th awarding 
of the prize, it seems unbelievable to have been chosen. 
Of course, every engineer, mathematician and scientist — 
every artist — knows that the greatest privilege is being 
able to do the work, and the greatest joy is to actually turn 
yearnings into reality. So we were already abundantly 
rewarded many years ago when this work came together 
to create a new genre of practical personal computing.
There were three people who were absolutely 
indispensible to Xerox PARC's success: Bob Taylor, 
Butler Lampson, and Chuck Thacker. Receiving this 
award with them is a truly incredible honor. Since this 
award is about a whole genre of computing, it is 
extremely important to acknowledge and thank the larger 
group of several dozen PARC researchers who helped 
conceive the dreams, build them and make them work. 
This was especially so in our Learning Research Group, 
where a wide range of special talents collaborated to 
design and build our computing and educational systems. 
I particularly want to thank Dan Ingalls and Adele 
Goldberg, my closest colleagues at PARC for helping 
realize our dreams.
About 10 years ago I wrote a history paper about our 
group's research (available online: see references below) 
and found, even in 60 pages, I could not come close to 
mentioning all the relevant influences. This is because 
I've long been an enthusiastic appreciator of great ideas in 
many genres—ranging from the graphic, musical and 
theatrical arts to math, science and engineering. I’ve been 
driven by beauty, romance and idealism, and owe more 
intellectual debts than most, starting with my artistic and 
musical mother and scientist father.
My best results have come from odd takes on ideas 
around me— more like rotations of point of view than 
incremental progress. For example, many of the strongest 
ingredients of my object- oriented ideas came from Ivan 
Sutherland's Sketchpad, Nygaard & Dahl's Simula, Bob 
Barton's B5000, the ARPAnet goal, Algebra and Biology. 
One of the deepest insights came from McCarthy's LISP. 
But the rotational result was a new and different species 
of programming and systems design that turned out to be 
critically useful at PARC and beyond.
Similarly, my start in personal computing came first from 
my colleague and friend, the wonderful and generous Ed 
Cheadle, who got me deeply involved in building "a little 
desk-top machine"—the FLEX Machine—that we called 
a "personal computer". Many of the later ideas 
incorporated were “adaptations, rotations, and dual 
reflections" of the lively ARPA interactive computing 
community with its cosmic visions of Licklider, Taylor, 
Engelbart, Clark, Shaw, Ellis, and many others about 
“man-computer symbiosis and intergalactic networks”.
My interest in children's education came from a talk by 
Marvin Minsky, then a visit to Seymour Papert's early 
classroom experiments with LOGO. Adding in McLuhan 
led to an analogy to the history of printed books, and the 
idea of a Dynabook metamedium: a notebook-sized 
wireless-networked "personal computer for children of all 
ages". The real printing revolution was a qualitative 
change in thought and argument that lagged the hardware 
inventions by almost two centuries. The special quality of 
computers is their ability to rapidly simulate arbitrary 
descriptions, and the real computer revolution won't 
happen until children can learn to read, write, argue and 
think in this powerful new way. We should all try to make 
this happen much sooner than 200 or even 20 more years! 
This got me started designing computer languages and 
authoring environments for children, and I've been at it 
ever since.
Looking back on these experiences, I’m struck that my 
lifelong processes of loving ideas and reacting to them 
didn’t bear really interesting fruit until I encountered 
“The ARPA Dream” in grad school at the University of 
Utah. A fish on land still waves its fins, but the results are 
qualitatively different when the fish is put in its most 
suitable watery environment.
This is what I call "The power of the context" or "Point of 
view is worth 80 IQ points". Science and engineering 
themselves are famous examples, but there are even more 
striking processes within these large disciplines. One of 
the greatest works of art from that fruitful period of 
ARPA/PARC research in the 60s and 70s was the almost 
invisible context and community that catalysed so many 
researchers to be incredibly better dreamers and thinkers. 
That it was a great work of art is confirmed by the world-
changing results that appeared so swiftly, and almost 
easily. That it was almost invisible, in spite of its 
tremendous success, is revealed by the disheartening fact 
today that, as far as I'm aware, no governments and no 
companies do edge-of-the-art research using these 
principles. Of course I would like be shown that I'm 
wrong on this last point.
Just as it is difficult to pin down all the processes that 
gave rise to the miracle of the United States Constitution, 
catching the key principles that made ARPA/PARC 
special has proven elusive.
We know that the designers of the Constitution were 
brilliant and well educated, but, as Ben Franklin pointed 
out at the culmination of the design, there was still much 
diversity of opinion and, in the end, it was the good will 
of the participants that allowed the whole to happen. 
Subsequent history has shown many times that it is the 
good will and belief of Americans in the Constitution that 
has allowed it to be such a power for good—no scrap of 
paper full of ideas, however great, is sufficient.
Similarly, when I think of ARPA/PARC, I think first of 
good will, even before brilliant people. Dave Evans, my 
advisor, mentor, and friend was simply amazing in his 
ability to act as though his graduate students were 
incredible thinkers. Only fools ever let him find out 
otherwise! I really do owe my career to Dave, and learned 
from him most of what I think is important. On a first 
visit to the Lincoln Labs ARPA project, we students were 
greeted by the PI Bert Sutherland, who couldn't have been 
happier to see us or more interested in showing us around. 
Not too many years later Bert was my lab manager at 
Xerox PARC. At UCLA, young professor Len Kleinrock 
became a lifelong friend from the first instant. A visit to 
CMU in those days would find Bill Wulf, a terrific 
systems designer and a guy who loved not just his 
students but students from elsewhere as well. If one made 
a pilgrimage to Doug Engelbart’s diggings in Menlo Park, 
Bill English, the co-inventor of the mouse, would drop 
what he was doing to show everything to the visiting 
junior researchers. Later at PARC, Bill went completely 
out of his way to help me set up my own research group. 
Nicholas Negroponte visited Utah and we’ve been co-
conspirators ever since. Bob Taylor, the director of 
ARPA-IPTO at that time, set up a yearly ARPA grad 
student conference to further embed us in the larger 
research processes and collegial relationships. As a 
postdoc, Larry Roberts got me to head a committee for an 
ARPAnet AI supercomputer where considerably senior 
people such as Marvin Minsky and Gordon Bell were 
theoretically supposed to be guided by me. They were 
amazingly graceful in how they dealt with this weird 
arrangement. Good will and great interest in graduate 
students as "world-class researchers who didn't have 
PhDs yet" was the general rule across the ARPA 
community.
What made all this work were a few simple principles 
articulated and administered with considerable purity. For 
example, it is no exageration to say that ARPA/PARC had 
"visions rather than goals" and "funded people, not 
projects". The vision was "interactive computing as a 
complementary intellectual partner for people pervasively 
networked world-wide". By not trying to derive specific 
goals from this at the funding side, ARPA/PARC was able 
to fund rather different and sometimes opposing points of 
view. For example, Engelbart and McCarthy had 
extremely different ways of thinking of the ARPA dream, 
but ideas from both of their research projects are 
important parts of today's interactive computing and 
networked world.
Giving a professional illustrator a goal for a poster 
usually results in what was desired. If one tries this with 
an artist, one will get what the artist needed to create that 
day. Sometimes we make, to have, sometimes to know 
and express. The pursuit of Art always sets off plans and 
goals, but plans and goals don't always give rise to Art. If 
"visions not goals" opens the heavens, it is important to 
find artistic people to conceive the projects.
Thus the "people not projects" principle was the other 
cornerstone of ARPA/PARC’s success. Because of the 
normal distribution of talents and drive in the world, a 
depressingly large percentage of organizational processes 
have been designed to deal with people of moderate 
ability, motivation, and trust. We can easily see this in 
most walks of life today, but also astoundingly in 
corporate, university, and government research. ARPA/
PARC had two main thresholds: self-motivation and 
ability. They cultivated people who "had to do, paid or 
not" and "whose doings were likely to be highly 
interesting and important". Thus conventional oversight 
was not only not needed, but was not really possible. 
"Peer review" wasn't easily done even with actual peers. 
The situation was "out of control", yet extremely 
productive and not at all anarchic.
"Out of control" because artists have to do what they have 
to do. "Extremely productive" because a great vision acts 
like a magnetic field from the future that aligns all the 
little iron particle artists to point to “North” without 
having to see it. They then make their own paths to the 
future. Xerox often was shocked at the PARC process and 
declared it out of control, but they didn't understand that 
the context was so powerful and compelling and the good 
will so abundant, that the artists worked happily at their 
version of the vision. The results were an enormous 
collection of breakthroughs, some of which we are 
celebrating today.
Our game is more like art and sports than accounting, in 
that high percentages of failure are quite OK as long as 
enough larger processes succeed. Ty Cobb's lifetime 
batting average was "only" .368, which means that he 
failed almost 2/3s of the time. But the critical question is: 
what happened in the 1/3 in which he was succeeding? If 
the answer is "great things" then this is all the justification 
that should be needed. Unless I'm badly mistaken, in most 
processes today—and sadly in most important areas of 
technology research—the administrators seem to prefer to 
be completely in control of mediocre processes to being 
"out of control" with superproductive processes. They are 
trying to "avoid failure" rather than trying to "capture the 
heavens".
What if you have something cosmic you really want to 
accomplish and aren't smart and knowledgable enough, 
and don't have enough people to do it? Before PARC, 
some of us had gone through a few bitter experiences in 
which large straight-ahead efforts to create working 
artifacts turned out to be fragile and less than successful. 
It seems a bit of a stretch to characterize PARC's group of 
supremely confident technologists as "humble", but the 
attitude from the beginning combined both big ideas and 
projects, with a large amount of respect for how 
complexity can grow faster than IQs. I remember Butler, 
in his first few weeks at PARC, arguing as only he could 
that he was tired of bubble-gummed !@#$%^&* fragile 
research systems that could barely be demoed by their 
creators. He called for two general principles: that we 
should not make anything that was not engineered for 100 
users, and we should all have to use our creations as our 
main computing systems (later called Living Lab). 
Naturally we fought him for a short while, thinking that 
the extra engineering would really slow things down, but 
we finally gave in to his brilliance and will. The scare of 
100 users and having to use our own stuff got everyone to 
put a lot more thought early on before starting to crab 
together a demo. The result was almost miraculous. Many 
of the most important projects got to a stable, usable, and 
user-testable place a year or more earlier than our 
optimistic estimates.
Respect for complexity, lack of knowledge, the small 
number of researchers and modest budgets at PARC led to 
a finessing style of design. Instead of trying to build the 
complex artifacts from scratch—like trying to build living 
things cell by cell—many of the most important projects 
built a kernel that could grow the artifact as new 
knowledge was gained—that is: get one cell’s DNA in 
good shape and let it help grow the whole system.
For example: Chuck's beautiful and parsimonious 
architecture for the Alto allowed most functions that were 
normally frozen in hardware to be re-microcoded at will 
as new ideas came forth, without requiring the low-level 
HW to be redesigned and built.
The Smalltalk system that I designed, and Dan Ingalls 
implemented, used an important meta-idea from LISP that 
allowed its DNA to be completely described on one sheet 
of paper, implemented in a month, and then grown in the 
presence of experience and new ideas into the powerful 
system it became.
The bitmap display acted as "silicon paper" that could 
show any image and this allowed us not to have to be 
perfect about the kinds of graphics that could be 
displayed. This led directly to bitmap painting, animation 
and typography.
The overlapping window interface was a finesse that tried 
to give children of all ages a simple universal way to 
communicate with anything on the computer in a form 
that revealed how windows were made (the original 
version was just 2 pages of Smalltalk).
The desktop publishing finesse was the realization that it 
was really just “object-graphics done right”, that is, 
arbitrary and open-ended graphic objects that could be 
laid out in 2-1/2 D.
Smalltalk was a language powerful enough to write its 
own operating system but in the friendly form of what 
today would be called a scripting language. So children 
were also authors (our main user community) and created 
many interesting interactive systems. This greatly 
extended the wide range of user studies that were done on 
the Alto.
A beautiful finesse was Butler's and Charles Simonyi's 
approach to the text editor BRAVO (the direct precursor 
to MS Word). It was partly an experiment in 
programming and partly in trying to design a new kind of 
word processor. They hit on the idea of providing 
something everybody wanted (printing on the new laser 
printer), dealt with the many early bugs by guaranteeing 
that the system could replay right up to a crash, and 
provided an online complaint and suggestion service. 
Most versions of BRAVO—as with Smalltalk and many 
of the other systems at PARC—were thus heavily used 
during their actual incremental creation: they were grown 
into being.
Another example of finessing avoided trying to make a 
perfect artifact—e.g. a network that has no noise and 
transmits perfectly. Instead Metcalfe's and Boggs' 
Ethernet (codesigned by Lampson & Thacker) was set up 
for errors-as-normal but could always eventually send the 
messages perfectly, even under extreme conditions. The 
difference between having to make a perfect artifact and 
one that can eventually do something perfectly is 
enormous.
One of the keys to how all this worked was the PARC 
version of Catch-22, known as "Error-33". One 
committed Error-33 by putting any externally controlled 
system, in-house or out, on one's critical path. This 
included vendors. Error-33 was avoided by doing all that 
was necessary within a research group and then sharing. 
Thus, virtually all the PARC hardware — including two 
big time-sharing main frames, the Altos, Ethernet, 
Laserprinter, file storage, and the systems that followed 
— and software — including operating systems, 
programming languages and development systems, 
productivity tools, etc. — were completely built inhouse 
by these few dozen researchers.
This sounds disastrous, but there is an important 
collection of theories in which the 1st order version and 
the 2nd order version are completely different yet both are 
true. For example, in programming there is a wide-spread 
1st order theory that one shouldn't build one's own tools, 
languages, and especially operating systems. This is true
—an incredible amount of time and energy has gone 
down these ratholes. On the 2nd hand, if you can build 
your own tools, languages and operating systems, then 
you absolutely should because the leverage that can be 
obtained (and often the time not wasted in trying to fix 
other people's not quite right tools) can be incredible.
All of these principles came together a little over 30 years 
ago to eventually give rise to 1500 Altos, Ethernetworked 
to: each other, Laserprinters, file servers and the 
ARPAnet, distributed to many kinds of end-users to be 
heavily used in real situations. This anticipated the 
commercial availability of this genre by 10- 15 years. The 
best way to predict the future is to invent it.
A few years later we had another thrill when we lugged 
Doug Fairbairn's Smalltalk Notetaker computer onto an 
airplane and did a full range of personal computing while 
in the air (and no flight attendents asked us to turn it off 
while taxiing and takeoff!). And, it’s still fun today to 
write and publish these remarks using only descendents of 
the ARPA/PARC inventions. But, while we are 
celebrating what did make it out to the larger world, we 
should realize that many of the most important ARPA/
PARC ideas haven’t yet been adopted by the mainstream.
For example, it is amazing to me that most of Doug 
Engelbart's big ideas about "augmenting the collective 
intelligence of groups working together" have still not 
taken hold in commercial systems. What looked like a 
real revolution twice for end-users, first with spreadsheets 
and then with Hypercard, didn't evolve into what will be 
commonplace 25 years from now, even though it could 
have. Most things done by most people today are still 
"automating paper, records and film" rather than 
"simulating the future". More discouraging is that most 
computing is still aimed at adults in business, and that 
aimed at nonbusiness and children is mainly for 
entertainment and apes the worst of television. We see 
almost no use in education of what is great and unique 
about computer modeling and computer thinking. These 
are not technological problems but a lack of perspective. 
Must we hope that the open-source software movements 
will put things right?
The ARPA/PARC history shows that a combination of 
vision, a modest amount of funding, with a felicitous 
context and process can almost magically give rise to new 
technologies that not only amplify civilization, but also 
produce tremendous wealth for the society. Isn't it time to 
do this again by Reason, even with no Cold War to use as 
an excuse? How about helping children of the world grow 
up to think much better than most adults do today? This 
would truly create "The Power of the Context".



When Bill Wulf called to say that the four of us 
had been awarded this year’s Draper Prize, I was 
floored because even the possibility was not in 
my mind. Given the amazing feats of engineering 
in the 20th century, the previous laureates, and 
that this is just the 10th awarding of the prize, it 
seems unbelievable to have been chosen. Of 
course, every engineer, mathematician and 
scientist — every artist — knows that the greatest 
privilege is being able to do the work, and the 
greatest joy is to actually turn yearnings into 
reality. So we were already abundantly rewarded 
many years ago when this work came together to 
create a new genre of practical personal 
computing.
There were three people who were absolutely 
indispensible to Xerox PARC's success: Bob 
Taylor, Butler Lampson, and Chuck Thacker. 
Receiving this award with them is a truly 
incredible honor. Since this award is about a 
whole genre of computing, it is extremely 
important to acknowledge and thank the larger 
group of several dozen PARC researchers who 
helped conceive the dreams, build them and make 
them work. This was especially so in our 
Learning Research Group, where a wide range of 
special talents collaborated to design and build 
our computing and educational systems. I 
particularly want to thank Dan Ingalls and Adele 
Goldberg, my closest colleagues at PARC for 
helping realize our dreams.
About 10 years ago I wrote a history paper about 
our group's research (available online: see 
references below) and found, even in 60 pages, I 
could not come close to mentioning all the 
relevant influences. This is because I've long been 
an enthusiastic appreciator of great ideas in many 
genres—ranging from the graphic, musical and 
theatrical arts to math, science and engineering. 
I’ve been driven by beauty, romance and 
idealism, and owe more intellectual debts than 
most, starting with my artistic and musical 
mother and scientist father.
My best results have come from odd takes on 
ideas around me— more like rotations of point of 
view than incremental progress. For example, 
many of the strongest ingredients of my object- 
oriented ideas came from Ivan Sutherland's 
Sketchpad, Nygaard & Dahl's Simula, Bob 
Barton's B5000, the ARPAnet goal, Algebra and 
Biology. One of the deepest insights came from 
McCarthy's LISP. But the rotational result was a 
new and different species of programming and 
systems design that turned out to be critically 
useful at PARC and beyond.
Similarly, my start in personal computing came 
first from my colleague and friend, the wonderful 
and generous Ed Cheadle, who got me deeply 
involved in building "a little desk-top 
machine"—the FLEX Machine—that we called a 
"personal computer". Many of the later ideas 
incorporated were “adaptations, rotations, and 
dual reflections" of the lively ARPA interactive 
computing community with its cosmic visions of 
Licklider, Taylor, Engelbart, Clark, Shaw, Ellis, 
and many others about “man-computer symbiosis 
and intergalactic networks”.
My interest in children's education came from a 
talk by Marvin Minsky, then a visit to Seymour 
Papert's early classroom experiments with 
LOGO. Adding in McLuhan led to an analogy to 
the history of printed books, and the idea of a 
Dynabook metamedium: a notebook-sized 
wireless-networked "personal computer for 
children of all ages". The real printing revolution 
was a qualitative change in thought and argument 
that lagged the hardware inventions by almost 
two centuries. The special quality of computers is 
their ability to rapidly simulate arbitrary 
descriptions, and the real computer revolution 
won't happen until children can learn to read, 
write, argue and think in this powerful new way. 
We should all try to make this happen much 
sooner than 200 or even 20 more years! This got 
me started designing computer languages and 
authoring environments for children, and I've 
been at it ever since.
Looking back on these experiences, I’m struck 
that my lifelong processes of loving ideas and 
reacting to them didn’t bear really interesting 
fruit until I encountered “The ARPA Dream” in 
grad school at the University of Utah. A fish on 
land still waves its fins, but the results are 
qualitatively different when the fish is put in its 
most suitable watery environment.
This is what I call "The power of the context" or 
"Point of view is worth 80 IQ points". Science 
and engineering themselves are famous 
examples, but there are even more striking 
processes within these large disciplines. One of 
the greatest works of art from that fruitful period 
of ARPA/PARC research in the 60s and 70s was 
the almost invisible context and community that 
catalysed so many researchers to be incredibly 
better dreamers and thinkers. That it was a great 
work of art is confirmed by the world-changing 
results that appeared so swiftly, and almost easily. 
That it was almost invisible, in spite of its 
tremendous success, is revealed by the 
disheartening fact today that, as far as I'm aware, 
no governments and no companies do edge-of-
the-art research using these principles. Of course 
I would like be shown that I'm wrong on this last 
point.
Just as it is difficult to pin down all the processes 
that gave rise to the miracle of the United States 
Constitution, catching the key principles that 
made ARPA/PARC special has proven elusive.
We know that the designers of the Constitution 
were brilliant and well educated, but, as Ben 
Franklin pointed out at the culmination of the 
design, there was still much diversity of opinion 
and, in the end, it was the good will of the 
participants that allowed the whole to happen. 
Subsequent history has shown many times that it 
is the good will and belief of Americans in the 
Constitution that has allowed it to be such a 
power for good—no scrap of paper full of ideas, 
however great, is sufficient.
Similarly, when I think of ARPA/PARC, I think 
first of good will, even before brilliant people. 
Dave Evans, my advisor, mentor, and friend was 
simply amazing in his ability to act as though his 
graduate students were incredible thinkers. Only 
fools ever let him find out otherwise! I really do 
owe my career to Dave, and learned from him 
most of what I think is important. On a first visit 
to the Lincoln Labs ARPA project, we students 
were greeted by the PI Bert Sutherland, who 
couldn't have been happier to see us or more 
interested in showing us around. Not too many 
years later Bert was my lab manager at Xerox 
PARC. At UCLA, young professor Len Kleinrock 
became a lifelong friend from the first instant. A 
visit to CMU in those days would find Bill Wulf, 
a terrific systems designer and a guy who loved 
not just his students but students from elsewhere 
as well. If one made a pilgrimage to Doug 
Engelbart’s diggings in Menlo Park, Bill English, 
the co-inventor of the mouse, would drop what he 
was doing to show everything to the visiting 
junior researchers. Later at PARC, Bill went 
completely out of his way to help me set up my 
own research group. Nicholas Negroponte visited 
Utah and we’ve been co-conspirators ever since. 
Bob Taylor, the director of ARPA-IPTO at that 
time, set up a yearly ARPA grad student 
conference to further embed us in the larger 
research processes and collegial relationships. As 
a postdoc, Larry Roberts got me to head a 
committee for an ARPAnet AI supercomputer 
where considerably senior people such as Marvin 
Minsky and Gordon Bell were theoretically 
supposed to be guided by me. They were 
amazingly graceful in how they dealt with this 
weird arrangement. Good will and great interest 
in graduate students as "world-class researchers 
who didn't have PhDs yet" was the general rule 
across the ARPA community.
What made all this work were a few simple 
principles articulated and administered with 
considerable purity. For example, it is no 
exageration to say that ARPA/PARC had "visions 
rather than goals" and "funded people, not 
projects". The vision was "interactive computing 
as a complementary intellectual partner for 
people pervasively networked world-wide". By 
not trying to derive specific goals from this at the 
funding side, ARPA/PARC was able to fund 
rather different and sometimes opposing points of 
view. For example, Engelbart and McCarthy had 
extremely different ways of thinking of the ARPA 
dream, but ideas from both of their research 
projects are important parts of today's interactive 
computing and networked world.
Giving a professional illustrator a goal for a 
poster usually results in what was desired. If one 
tries this with an artist, one will get what the 
artist needed to create that day. Sometimes we 
make, to have, sometimes to know and express. 
The pursuit of Art always sets off plans and 
goals, but plans and goals don't always give rise 
to Art. If "visions not goals" opens the heavens, it 
is important to find artistic people to conceive the 
projects.
Thus the "people not projects" principle was the 
other cornerstone of ARPA/PARC’s success. 
Because of the normal distribution of talents and 
drive in the world, a depressingly large 
percentage of organizational processes have been 
designed to deal with people of moderate ability, 
motivation, and trust. We can easily see this in 
most walks of life today, but also astoundingly in 
corporate, university, and government research. 
ARPA/PARC had two main thresholds: self-
motivation and ability. They cultivated people 
who "had to do, paid or not" and "whose doings 
were likely to be highly interesting and 
important". Thus conventional oversight was not 
only not needed, but was not really possible. 
"Peer review" wasn't easily done even with actual 
peers. The situation was "out of control", yet 
extremely productive and not at all anarchic.
"Out of control" because artists have to do what 
they have to do. "Extremely productive" because 
a great vision acts like a magnetic field from the 
future that aligns all the little iron particle artists 
to point to “North” without having to see it. They 
then make their own paths to the future. Xerox 
often was shocked at the PARC process and 
declared it out of control, but they didn't 
understand that the context was so powerful and 
compelling and the good will so abundant, that 
the artists worked happily at their version of the 
vision. The results were an enormous collection 
of breakthroughs, some of which we are 
celebrating today.
Our game is more like art and sports than 
accounting, in that high percentages of failure are 
quite OK as long as enough larger processes 
succeed. Ty Cobb's lifetime batting average was 
"only" .368, which means that he failed almost 
2/3s of the time. But the critical question is: what 
happened in the 1/3 in which he was succeeding? 
If the answer is "great things" then this is all the 
justification that should be needed. Unless I'm 
badly mistaken, in most processes today—and 
sadly in most important areas of technology 
research—the administrators seem to prefer to be 
completely in control of mediocre processes to 
being "out of control" with superproductive 
processes. They are trying to "avoid failure" 
rather than trying to "capture the heavens".
What if you have something cosmic you really 
want to accomplish and aren't smart and 
knowledgable enough, and don't have enough 
people to do it? Before PARC, some of us had 
gone through a few bitter experiences in which 
large straight-ahead efforts to create working 
artifacts turned out to be fragile and less than 
successful. It seems a bit of a stretch to 
characterize PARC's group of supremely 
confident technologists as "humble", but the 
attitude from the beginning combined both big 
ideas and projects, with a large amount of respect 
for how complexity can grow faster than IQs. I 
remember Butler, in his first few weeks at PARC, 
arguing as only he could that he was tired of 
bubble-gummed !@#$%^&* fragile research 
systems that could barely be demoed by their 
creators. He called for two general principles: 
that we should not make anything that was not 
engineered for 100 users, and we should all have 
to use our creations as our main computing 
systems (later called Living Lab). Naturally we 
fought him for a short while, thinking that the 
extra engineering would really slow things down, 
but we finally gave in to his brilliance and will. 
The scare of 100 users and having to use our own 
stuff got everyone to put a lot more thought early 
on before starting to crab together a demo. The 
result was almost miraculous. Many of the most 
important projects got to a stable, usable, and 
user-testable place a year or more earlier than our 
optimistic estimates.
Respect for complexity, lack of knowledge, the 
small number of researchers and modest budgets 
at PARC led to a finessing style of design. Instead 
of trying to build the complex artifacts from 
scratch—like trying to build living things cell by 
cell—many of the most important projects built a 
kernel that could grow the artifact as new 
knowledge was gained—that is: get one cell’s 
DNA in good shape and let it help grow the 
whole system.
For example: Chuck's beautiful and parsimonious 
architecture for the Alto allowed most functions 
that were normally frozen in hardware to be re-
microcoded at will as new ideas came forth, 
without requiring the low-level HW to be 
redesigned and built.
The Smalltalk system that I designed, and Dan 
Ingalls implemented, used an important meta-
idea from LISP that allowed its DNA to be 
completely described on one sheet of paper, 
implemented in a month, and then grown in the 
presence of experience and new ideas into the 
powerful system it became.
The bitmap display acted as "silicon paper" that 
could show any image and this allowed us not to 
have to be perfect about the kinds of graphics that 
could be displayed. This led directly to bitmap 
painting, animation and typography.
The overlapping window interface was a finesse 
that tried to give children of all ages a simple 
universal way to communicate with anything on 
the computer in a form that revealed how 
windows were made (the original version was 
just 2 pages of Smalltalk).
The desktop publishing finesse was the 
realization that it was really just “object-graphics 
done right”, that is, arbitrary and open-ended 
graphic objects that could be laid out in 2-1/2 D.
Smalltalk was a language powerful enough to 
write its own operating system but in the friendly 
form of what today would be called a scripting 
language. So children were also authors (our 
main user community) and created many 
interesting interactive systems. This greatly 
extended the wide range of user studies that were 
done on the Alto.
A beautiful finesse was Butler's and Charles 
Simonyi's approach to the text editor BRAVO 
(the direct precursor to MS Word). It was partly 
an experiment in programming and partly in 
trying to design a new kind of word processor. 
They hit on the idea of providing something 
everybody wanted (printing on the new laser 
printer), dealt with the many early bugs by 
guaranteeing that the system could replay right 
up to a crash, and provided an online complaint 
and suggestion service. Most versions of BRAVO
—as with Smalltalk and many of the other 
systems at PARC—were thus heavily used during 
their actual incremental creation: they were 
grown into being.
Another example of finessing avoided trying to 
make a perfect artifact—e.g. a network that has 
no noise and transmits perfectly. Instead 
Metcalfe's and Boggs' Ethernet (codesigned by 
Lampson & Thacker) was set up for errors-as-
normal but could always eventually send the 
messages perfectly, even under extreme 
conditions. The difference between having to 
make a perfect artifact and one that can 
eventually do something perfectly is enormous.
One of the keys to how all this worked was the 
PARC version of Catch-22, known as "Error-33". 
One committed Error-33 by putting any 
externally controlled system, in-house or out, on 
one's critical path. This included vendors. 
Error-33 was avoided by doing all that was 
necessary within a research group and then 
sharing. Thus, virtually all the PARC hardware 
— including two big time-sharing main frames, 
the Altos, Ethernet, Laserprinter, file storage, and 
the systems that followed — and software — 
including operating systems, programming 
languages and development systems, productivity 
tools, etc. — were completely built inhouse by 
these few dozen researchers.
This sounds disastrous, but there is an important 
collection of theories in which the 1st order 
version and the 2nd order version are completely 
different yet both are true. For example, in 
programming there is a wide-spread 1st order 
theory that one shouldn't build one's own tools, 
languages, and especially operating systems. This 
is true—an incredible amount of time and energy 
has gone down these ratholes. On the 2nd hand, if 
you can build your own tools, languages and 
operating systems, then you absolutely should 
because the leverage that can be obtained (and 
often the time not wasted in trying to fix other 
people's not quite right tools) can be incredible.
All of these principles came together a little over 
30 years ago to eventually give rise to 1500 
Altos, Ethernetworked to: each other, 
Laserprinters, file servers and the ARPAnet, 
distributed to many kinds of end-users to be 
heavily used in real situations. This anticipated 
the commercial availability of this genre by 10- 
15 years. The best way to predict the future is to 
invent it.
A few years later we had another thrill when we 
lugged Doug Fairbairn's Smalltalk Notetaker 
computer onto an airplane and did a full range of 
personal computing while in the air (and no flight 
attendents asked us to turn it off while taxiing 
and takeoff!). And, it’s still fun today to write and 
publish these remarks using only descendents of 
the ARPA/PARC inventions. But, while we are 
celebrating what did make it out to the larger 
world, we should realize that many of the most 
important ARPA/PARC ideas haven’t yet been 
adopted by the mainstream.
For example, it is amazing to me that most of 
Doug Engelbart's big ideas about "augmenting 
the collective intelligence of groups working 
together" have still not taken hold in commercial 
systems. What looked like a real revolution twice 
for end-users, first with spreadsheets and then 
with Hypercard, didn't evolve into what will be 
commonplace 25 years from now, even though it 
could have. Most things done by most people 
today are still "automating paper, records and 
film" rather than "simulating the future". More 
discouraging is that most computing is still aimed 
at adults in business, and that aimed at 
nonbusiness and children is mainly for 
entertainment and apes the worst of television. 
We see almost no use in education of what is 
great and unique about computer modeling and 
computer thinking. These are not technological 
problems but a lack of perspective. Must we hope 
that the open-source software movements will put 
things right?
The ARPA/PARC history shows that a 
combination of vision, a modest amount of 
funding, with a felicitous context and process can 
almost magically give rise to new technologies 
that not only amplify civilization, but also 
produce tremendous wealth for the society. Isn't it 
time to do this again by Reason, even with no 
Cold War to use as an excuse? How about 
helping children of the world grow up to think 
much better than most adults do today? This 
would truly create "The Power of the Context".



When Bill Wulf called to say that the four 
of us had been awarded this year’s Draper 
Prize, I was floored because even the 
possibility was not in my mind. Given the 
amazing feats of engineering in the 20th 
century, the previous laureates, and that 
this is just the 10th awarding of the prize, it 
seems unbelievable to have been chosen. 
Of course, every engineer, mathematician 
and scientist — every artist — knows that 
the greatest privilege is being able to do the 
work, and the greatest joy is to actually 
turn yearnings into reality. So we were 
already abundantly rewarded many years 
ago when this work came together to create 
a new genre of practical personal 
computing.
There were three people who were 
absolutely indispensible to Xerox PARC's 
success: Bob Taylor, Butler Lampson, and 
Chuck Thacker. Receiving this award with 
them is a truly incredible honor. Since this 
award is about a whole genre of 
computing, it is extremely important to 
acknowledge and thank the larger group of 
several dozen PARC researchers who 
helped conceive the dreams, build them 
and make them work. This was especially 
so in our Learning Research Group, where 
a wide range of special talents collaborated 
to design and build our computing and 
educational systems. I particularly want to 
thank Dan Ingalls and Adele Goldberg, my 
closest colleagues at PARC for helping 
realize our dreams.
About 10 years ago I wrote a history paper 
about our group's research (available 
online: see references below) and found, 
even in 60 pages, I could not come close to 
mentioning all the relevant influences. This 
is because I've long been an enthusiastic 
appreciator of great ideas in many genres—
ranging from the graphic, musical and 
theatrical arts to math, science and 
engineering. I’ve been driven by beauty, 
romance and idealism, and owe more 
intellectual debts than most, starting with 
my artistic and musical mother and 
scientist father.
My best results have come from odd takes 
on ideas around me— more like rotations 
of point of view than incremental progress. 
For example, many of the strongest 
ingredients of my object- oriented ideas 
came from Ivan Sutherland's Sketchpad, 
Nygaard & Dahl's Simula, Bob Barton's 
B5000, the ARPAnet goal, Algebra and 
Biology. One of the deepest insights came 
from McCarthy's LISP. But the rotational 
result was a new and different species of 
programming and systems design that 
turned out to be critically useful at PARC 
and beyond.
Similarly, my start in personal computing 
came first from my colleague and friend, 
the wonderful and generous Ed Cheadle, 
who got me deeply involved in building "a 
little desk-top machine"—the FLEX 
Machine—that we called a "personal 
computer". Many of the later ideas 
incorporated were “adaptations, rotations, 
and dual reflections" of the lively ARPA 
interactive computing community with its 
cosmic visions of Licklider, Taylor, 
Engelbart, Clark, Shaw, Ellis, and many 
others about “man-computer symbiosis and 
intergalactic networks”.
My interest in children's education came 
from a talk by Marvin Minsky, then a visit 
to Seymour Papert's early classroom 
experiments with LOGO. Adding in 
McLuhan led to an analogy to the history 
of printed books, and the idea of a 
Dynabook metamedium: a notebook-sized 
wireless-networked "personal computer for 
children of all ages". The real printing 
revolution was a qualitative change in 
thought and argument that lagged the 
hardware inventions by almost two 
centuries. The special quality of computers 
is their ability to rapidly simulate arbitrary 
descriptions, and the real computer 
revolution won't happen until children can 
learn to read, write, argue and think in this 
powerful new way. We should all try to 
make this happen much sooner than 200 or 
even 20 more years! This got me started 
designing computer languages and 
authoring environments for children, and 
I've been at it ever since.
Looking back on these experiences, I’m 
struck that my lifelong processes of loving 
ideas and reacting to them didn’t bear 
really interesting fruit until I encountered 
“The ARPA Dream” in grad school at the 
University of Utah. A fish on land still 
waves its fins, but the results are 
qualitatively different when the fish is put 
in its most suitable watery environment.
This is what I call "The power of the 
context" or "Point of view is worth 80 IQ 
points". Science and engineering 
themselves are famous examples, but there 
are even more striking processes within 
these large disciplines. One of the greatest 
works of art from that fruitful period of 
ARPA/PARC research in the 60s and 70s 
was the almost invisible context and 
community that catalysed so many 
researchers to be incredibly better dreamers 
and thinkers. That it was a great work of art 
is confirmed by the world-changing results 
that appeared so swiftly, and almost easily. 
That it was almost invisible, in spite of its 
tremendous success, is revealed by the 
disheartening fact today that, as far as I'm 
aware, no governments and no companies 
do edge-of-the-art research using these 
principles. Of course I would like be shown 
that I'm wrong on this last point.
Just as it is difficult to pin down all the 
processes that gave rise to the miracle of 
the United States Constitution, catching the 
key principles that made ARPA/PARC 
special has proven elusive.
We know that the designers of the 
Constitution were brilliant and well 
educated, but, as Ben Franklin pointed out 
at the culmination of the design, there was 
still much diversity of opinion and, in the 
end, it was the good will of the participants 
that allowed the whole to happen. 
Subsequent history has shown many times 
that it is the good will and belief of 
Americans in the Constitution that has 
allowed it to be such a power for good—no 
scrap of paper full of ideas, however great, 
is sufficient.
Similarly, when I think of ARPA/PARC, I 
think first of good will, even before 
brilliant people. Dave Evans, my advisor, 
mentor, and friend was simply amazing in 
his ability to act as though his graduate 
students were incredible thinkers. Only 
fools ever let him find out otherwise! I 
really do owe my career to Dave, and 
learned from him most of what I think is 
important. On a first visit to the Lincoln 
Labs ARPA project, we students were 
greeted by the PI Bert Sutherland, who 
couldn't have been happier to see us or 
more interested in showing us around. Not 
too many years later Bert was my lab 
manager at Xerox PARC. At UCLA, young 
professor Len Kleinrock became a lifelong 
friend from the first instant. A visit to CMU 
in those days would find Bill Wulf, a 
terrific systems designer and a guy who 
loved not just his students but students 
from elsewhere as well. If one made a 
pilgrimage to Doug Engelbart’s diggings in 
Menlo Park, Bill English, the co-inventor 
of the mouse, would drop what he was 
doing to show everything to the visiting 
junior researchers. Later at PARC, Bill 
went completely out of his way to help me 
set up my own research group. Nicholas 
Negroponte visited Utah and we’ve been 
co-conspirators ever since. Bob Taylor, the 
director of ARPA-IPTO at that time, set up 
a yearly ARPA grad student conference to 
further embed us in the larger research 
processes and collegial relationships. As a 
postdoc, Larry Roberts got me to head a 
committee for an ARPAnet AI 
supercomputer where considerably senior 
people such as Marvin Minsky and Gordon 
Bell were theoretically supposed to be 
guided by me. They were amazingly 
graceful in how they dealt with this weird 
arrangement. Good will and great interest 
in graduate students as "world-class 
researchers who didn't have PhDs yet" was 
the general rule across the ARPA 
community.
What made all this work were a few simple 
principles articulated and administered 
with considerable purity. For example, it is 
no exageration to say that ARPA/PARC 
had "visions rather than goals" and "funded 
people, not projects". The vision was 
"interactive computing as a complementary 
intellectual partner for people pervasively 
networked world-wide". By not trying to 
derive specific goals from this at the 
funding side, ARPA/PARC was able to 
fund rather different and sometimes 
opposing points of view. For example, 
Engelbart and McCarthy had extremely 
different ways of thinking of the ARPA 
dream, but ideas from both of their 
research projects are important parts of 
today's interactive computing and 
networked world.
Giving a professional illustrator a goal for 
a poster usually results in what was 
desired. If one tries this with an artist, one 
will get what the artist needed to create that 
day. Sometimes we make, to have, 
sometimes to know and express. The 
pursuit of Art always sets off plans and 
goals, but plans and goals don't always 
give rise to Art. If "visions not goals" 
opens the heavens, it is important to find 
artistic people to conceive the projects.
Thus the "people not projects" principle 
was the other cornerstone of ARPA/
PARC’s success. Because of the normal 
distribution of talents and drive in the 
world, a depressingly large percentage of 
organizational processes have been 
designed to deal with people of moderate 
ability, motivation, and trust. We can easily 
see this in most walks of life today, but also 
astoundingly in corporate, university, and 
government research. ARPA/PARC had 
two main thresholds: self-motivation and 
ability. They cultivated people who "had to 
do, paid or not" and "whose doings were 
likely to be highly interesting and 
important". Thus conventional oversight 
was not only not needed, but was not really 
possible. "Peer review" wasn't easily done 
even with actual peers. The situation was 
"out of control", yet extremely productive 
and not at all anarchic.
"Out of control" because artists have to do 
what they have to do. "Extremely 
productive" because a great vision acts like 
a magnetic field from the future that aligns 
all the little iron particle artists to point to 
“North” without having to see it. They then 
make their own paths to the future. Xerox 
often was shocked at the PARC process 
and declared it out of control, but they 
didn't understand that the context was so 
powerful and compelling and the good will 
so abundant, that the artists worked happily 
at their version of the vision. The results 
were an enormous collection of 
breakthroughs, some of which we are 
celebrating today.
Our game is more like art and sports than 
accounting, in that high percentages of 
failure are quite OK as long as enough 
larger processes succeed. Ty Cobb's 
lifetime batting average was "only" .368, 
which means that he failed almost 2/3s of 
the time. But the critical question is: what 
happened in the 1/3 in which he was 
succeeding? If the answer is "great things" 
then this is all the justification that should 
be needed. Unless I'm badly mistaken, in 
most processes today—and sadly in most 
important areas of technology research—
the administrators seem to prefer to be 
completely in control of mediocre 
processes to being "out of control" with 
superproductive processes. They are trying 
to "avoid failure" rather than trying to 
"capture the heavens".
What if you have something cosmic you 
really want to accomplish and aren't smart 
and knowledgable enough, and don't have 
enough people to do it? Before PARC, 
some of us had gone through a few bitter 
experiences in which large straight-ahead 
efforts to create working artifacts turned 
out to be fragile and less than successful. It 
seems a bit of a stretch to characterize 
PARC's group of supremely confident 
technologists as "humble", but the attitude 
from the beginning combined both big 
ideas and projects, with a large amount of 
respect for how complexity can grow faster 
than IQs. I remember Butler, in his first 
few weeks at PARC, arguing as only he 
could that he was tired of bubble-
gummed !@#$%^&* fragile research 
systems that could barely be demoed by 
their creators. He called for two general 
principles: that we should not make 
anything that was not engineered for 100 
users, and we should all have to use our 
creations as our main computing systems 
(later called Living Lab). Naturally we 
fought him for a short while, thinking that 
the extra engineering would really slow 
things down, but we finally gave in to his 
brilliance and will. The scare of 100 users 
and having to use our own stuff got 
everyone to put a lot more thought early on 
before starting to crab together a demo. 
The result was almost miraculous. Many of 
the most important projects got to a stable, 
usable, and user-testable place a year or 
more earlier than our optimistic estimates.
Respect for complexity, lack of knowledge, 
the small number of researchers and 
modest budgets at PARC led to a finessing 
style of design. Instead of trying to build 
the complex artifacts from scratch—like 
trying to build living things cell by cell—
many of the most important projects built a 
kernel that could grow the artifact as new 
knowledge was gained—that is: get one 
cell’s DNA in good shape and let it help 
grow the whole system.
For example: Chuck's beautiful and 
parsimonious architecture for the Alto 
allowed most functions that were normally 
frozen in hardware to be re-microcoded at 
will as new ideas came forth, without 
requiring the low-level HW to be 
redesigned and built.
The Smalltalk system that I designed, and 
Dan Ingalls implemented, used an 
important meta-idea from LISP that 
allowed its DNA to be completely 
described on one sheet of paper, 
implemented in a month, and then grown in 
the presence of experience and new ideas 
into the powerful system it became.
The bitmap display acted as "silicon paper" 
that could show any image and this 
allowed us not to have to be perfect about 
the kinds of graphics that could be 
displayed. This led directly to bitmap 
painting, animation and typography.
The overlapping window interface was a 
finesse that tried to give children of all ages 
a simple universal way to communicate 
with anything on the computer in a form 
that revealed how windows were made (the 
original version was just 2 pages of 
Smalltalk).
The desktop publishing finesse was the 
realization that it was really just “object-
graphics done right”, that is, arbitrary and 
open-ended graphic objects that could be 
laid out in 2-1/2 D.
Smalltalk was a language powerful enough 
to write its own operating system but in the 
friendly form of what today would be 
called a scripting language. So children 
were also authors (our main user 
community) and created many interesting 
interactive systems. This greatly extended 
the wide range of user studies that were 
done on the Alto.
A beautiful finesse was Butler's and 
Charles Simonyi's approach to the text 
editor BRAVO (the direct precursor to MS 
Word). It was partly an experiment in 
programming and partly in trying to design 
a new kind of word processor. They hit on 
the idea of providing something everybody 
wanted (printing on the new laser printer), 
dealt with the many early bugs by 
guaranteeing that the system could replay 
right up to a crash, and provided an online 
complaint and suggestion service. Most 
versions of BRAVO—as with Smalltalk 
and many of the other systems at PARC—
were thus heavily used during their actual 
incremental creation: they were grown into 
being.
Another example of finessing avoided 
trying to make a perfect artifact—e.g. a 
network that has no noise and transmits 
perfectly. Instead Metcalfe's and Boggs' 
Ethernet (codesigned by Lampson & 
Thacker) was set up for errors-as-normal 
but could always eventually send the 
messages perfectly, even under extreme 
conditions. The difference between having 
to make a perfect artifact and one that can 
eventually do something perfectly is 
enormous.
One of the keys to how all this worked was 
the PARC version of Catch-22, known as 
"Error-33". One committed Error-33 by 
putting any externally controlled system, 
in-house or out, on one's critical path. This 
included vendors. Error-33 was avoided by 
doing all that was necessary within a 
research group and then sharing. Thus, 
virtually all the PARC hardware — 
including two big time-sharing main 
frames, the Altos, Ethernet, Laserprinter, 
file storage, and the systems that followed 
— and software — including operating 
systems, programming languages and 
development systems, productivity tools, 
etc. — were completely built inhouse by 
these few dozen researchers.
This sounds disastrous, but there is an 
important collection of theories in which 
the 1st order version and the 2nd order 
version are completely different yet both 
are true. For example, in programming 
there is a wide-spread 1st order theory that 
one shouldn't build one's own tools, 
languages, and especially operating 
systems. This is true—an incredible 
amount of time and energy has gone down 
these ratholes. On the 2nd hand, if you can 
build your own tools, languages and 
operating systems, then you absolutely 
should because the leverage that can be 
obtained (and often the time not wasted in 
trying to fix other people's not quite right 
tools) can be incredible.
All of these principles came together a 
little over 30 years ago to eventually give 
rise to 1500 Altos, Ethernetworked to: each 
other, Laserprinters, file servers and the 
ARPAnet, distributed to many kinds of 
end-users to be heavily used in real 
situations. This anticipated the commercial 
availability of this genre by 10- 15 years. 
The best way to predict the future is to 
invent it.
A few years later we had another thrill 
when we lugged Doug Fairbairn's 
Smalltalk Notetaker computer onto an 
airplane and did a full range of personal 
computing while in the air (and no flight 
attendents asked us to turn it off while 
taxiing and takeoff!). And, it’s still fun 
today to write and publish these remarks 
using only descendents of the ARPA/PARC 
inventions. But, while we are celebrating 
what did make it out to the larger world, 
we should realize that many of the most 
important ARPA/PARC ideas haven’t yet 
been adopted by the mainstream.
For example, it is amazing to me that most 
of Doug Engelbart's big ideas about 
"augmenting the collective intelligence of 
groups working together" have still not 
taken hold in commercial systems. What 
looked like a real revolution twice for end-
users, first with spreadsheets and then with 
Hypercard, didn't evolve into what will be 
commonplace 25 years from now, even 
though it could have. Most things done by 
most people today are still "automating 
paper, records and film" rather than 
"simulating the future". More discouraging 
is that most computing is still aimed at 
adults in business, and that aimed at 
nonbusiness and children is mainly for 
entertainment and apes the worst of 
television. We see almost no use in 
education of what is great and unique about 
computer modeling and computer thinking. 
These are not technological problems but a 
lack of perspective. Must we hope that the 
open-source software movements will put 
things right?
The ARPA/PARC history shows that a 
combination of vision, a modest amount of 
funding, with a felicitous context and 
process can almost magically give rise to 
new technologies that not only amplify 
civilization, but also produce tremendous 
wealth for the society. Isn't it time to do 
this again by Reason, even with no Cold 
War to use as an excuse? How about 
helping children of the world grow up to 
think much better than most adults do 
today? This would truly create "The Power 
of the Context".


